
PB93-238178 NT1S
Information is our business.

THE COMPLEXITY OF RESHAPING ARRAYS ON
BOOLEAN CUBES

THINKING MACHINES CORP.
CAMBRIDGE, MA

1990

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service jXxüC QUALMT lEBJfELTL'mii as

DISTRIBUTION STATEMENT

Approved for public release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE
PB93-238178

Pjnhc reo:" ~z burden *cr cu s :.z' erdon of nforn-ation s ?s* mated to a.erage ' -our oe' "esoorse. .ncudi-g the t.Tie *cr 'ev.e^ing instructions, searching e*:st'ng aara sources.
gatne'mg anc maintain.ng the data -eeaed, arg completing anc re., le.vrg trecc'.ert'or of information Sendcomments regarding this burden estimate or an, other aspect of this
coi'ecro.n :' intorrrat'on. nciudmg Suggest ens *:r 'educing tn.s ouraen t: -Vasnmgton Headauarters Sernces, Directorate tor nformat'cn Ooe'ations ana feocrts, 12'5 Jefferson
Da.s-ro-.-.a,.Suite "2:<: -'imgtor . - 222C2-J302 and to the Q*':ce 0* Management and Budget Dape-ACr< Reduction Project (07C4-0,38), /.'ashington, DC 20503

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE
1990

3 REPORT TYPE AND DATES COVERED
Technical

4. TITLE AND SUBTITLE

The complexity of reshaping arrays on boolean
cubes

6. AUTHOR(S)

C. Ho, and S.L. Johnsson

5. FUNDING NUMBERS

AFOSR-89-0382
ONR-N00014-86-K-0310

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Thinking Machines Corp.
245 First Street
Cambridge, Ma 02142-1264

8. PERFORMING ORGANIZATION
REPORT NUMBER

TMC-4

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR--Dept. of Air FOrce, The Pentagon Washington
DC 20330

ONR- - Department of the Navy, The Pentagon Washington DC

10. SPONSORING ' MONITORING
AGENCY REPORT NUMBER

11. SUr = .:Mi .-TES

"i STATEVENT 12b. DISTRIBUTION CODE

13. ABSTRAF K'--. -„~20C .::■?;.

Reshaping of arrays is a convenient programming primitive. For arrays
encodied in a binary-reflected gray code reshaping implies code change.
We show that an axis splitting, or combining of two axes, requires co-
mmunication in exactly one dimenstion, and that for multiple axis
splittings the exchanges in the different dimensions can be ordered
arbitrarily. We present two algorithms that vary incomplexity.

14. S'JBiEC* TERMS

Boolean algorithms
15. NUMBER OF PAGES

 9
16. PRICE CODE

17 SECURITY CLASSIFICATION
Oc REPORT

unclassified

18. SECURITY CLASSIFICATION
M.S PAGE

19 SECURITY CLASSIFICATION
OE^TRACT

20. LIMITATION OF ABSTRACT

SAR

Stanaa'd Form 298 <:Rev 2-89)
p'escDea be iNs sta Z3S-S

HIHI im
PB93-238178

The Complexity of Reshaping Arrays on Boolean Cubes
Si. Johnsson, \kle University
C.T. Ho, IBM Aimaden Research Center

»TIC QUALITY.INSPECTED 3

Thinking Machines Corporation BA90-2
Technical Report Series „ A , ■ fc

4/90
Reproduced by: l

National Technical Information Service
U. S. Department of Commerce
Springfield, VA 22161 fmc-H

TMC-4

The Complexity of Reshaping Arrays on Boolean Cubes

S. Lennart Johnsson*
Department of Computer Science

Yale University
New Haven, CT 06520

Johnsson@cs.yale.edu, Johnsson@think.com

Ching-Tien Ho*
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

Ho@ibm.com

Abstract
BA90-2

Reshaping of arrays is a convenient programming primi-
tive. For arrays encoded in a binary-reflected Gray code
reshaping implies code change. We show that an axis
splitting, or combining of two axes, requires communica-
tion in exactly one dimension, and that for multiple axes
splittings the exchanges in the different dimensions can
be ordered arbitrarily. The number of element transfers
in sequence is independent of the number of dimensions
requiring communication for large local data sets, and
concurrent communication. The lower bound for the
number of element transfers in sequence is y with K
elements per processor. We present algorithms that is
of this complexity for some cases, and of complexity K
in the worst case. Conversion between binary code and
binary-reflected Gray code is a special case of reshap-
ing.

1 Introduction

In computer systems locality of reference has had a sig-
nificant impact on performance ever since memory hi-
erarchies were introduced. In modern computer sys-
tems small memories in MOS technologies may be de-
signed for higher speeds than larger memories. In multi-
processor systems with processors and memory modules
interconnected via a network, the access time for non-
local information is typically considerably longer than
local access. Moreover, the access time depends upon
the network topology, congestion and bandwidth of the
communications network. The reference pattern has a
significant impact on the optimal data allocation in net-
works that have a non-uniform distance between pairs
of nodes, such as Boolean cube networks.

In well structured computations the data is conve-
niently represented by arrays. Many algorithms require
local references in a Cartesian space corresponding to

'The author is alio with Thinking Machines Corp., 245 First
Street, Cambridge, MA 03142. This work was supported in part
by AFOSR-89-0382 and ONR. Contract No. N00014-86-K-0310.

'Part of the work was done while the author was with the
Department of Computer Science, Yale Uni»ersity.

the array. Explicit methods for the solution of partial
differential equations are examples thereof. Preserving
the locality in the Cartesian space when mapped to the
processor network is important with respect to perfor-
mance. The binary-reflected Gray code is often used to
accomplish this task in Boolean cube networks. Succes-
sive integers in the decimal encoding differ by one bit in
their Gray code encoding. This property is used in CM-
Fortran [1], Thinking Machines Corp. version of Fortran
8X [11] for the Connection Machine. In this language
implementation, array axes are by default encoded in a
binary-reflected Gray code.

Some important algorithms with a regular communi-
cation pattern depend on local references in a Boolean
space. For instance, the Fast Fourier Transform re-
quires communication in the form of a butterfly net-
work, which implies communication between adjacent
nodes in a Boolean space with corresponding nodes in
different ranks mapped to the sarnie processor. In many
scientific and engineering applications algorithms that
depend upon both types of access patterns may be used,
and conversion between the two storage forms may be
important.

Many recursive algorithms make use of axis split-
ting, or combining. An example is the data parallel
implementation [2] of the divide-and-conquer algorithm
by Dongarra and Sorensen [3] for computing eigenval-
ues of symmetric tridiagonal systems. Array manipula-
tion through operations such as RESHAPE in Fortran
8X and APL, impacts the encoding for binary-reflected
Gray coded axes. The encoding of binary coded axes is
unaffected.

Different axes may have different encoding. For in-
stance, if butterfly computations are performed along
one axis, and nearest-neighbor communications in
a Cartesian space along the other axis of a two-
dimensional array, then binary encoding of the first axis
and binary-reflected Gray code encoding of the second
axis is desirable. Furthermore, the encoding of a sin-
gle axis may be mixed. Typically the number of array
elements along an axis exceeds the number of proces-
sors allocated to the axis, forcing several elements along
an axis to be allocated to the memory of each proces-

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

•or with the array dementi being allocated a« evenly as
potcible. Cyclic and consecutive [6] allocation are two
common schemes for assigning multiple elements to pro-
cessors. With local random access memories distance is
not an issue in determining the encoding for the local
memories. Binary encoding is typically used for the lo-
cal part of an axis, and binary-reflected Gray code for

the processor part.
As an example consider a two-dimensional logic ar-

my A of shape P xQ allocated to an Ni x N0 physical
tmy of processors, where P = 2P, Q = 2*, JVj = 2"1,
N0 = 2"', p > ni and q > n0. The data allocation is
consecutive, and each array axis is encoded in a binary-
reflected Gray code. Bit m in the address space is de-
noted gm if encoded in a binary-reflected Gray code, and
6m if encoded in binary code. Bit zero, or dimension
eero, is the least significant, and the rightmost dimen-
sion in our expressions. The symbol || denotes concate-
nation of two fields. Axes are also labeled right to left.
We illustrate the allocation as follows

(gp-lgp-2 ■ -gp-n, gp-»i-lgp-u,-2 ■ ' • gQ 11

p.ddr' in.ddr1

g,-lg,-2 •••?,-«. gt-«,,-I gf-n,-a 3o>-

puddr" in.ddr"

The processor address for an element (i,j) of the
logic array is formed as (paddr^OHpaddr (;')), and the
local storage address is (maddr1(t)l|m'"ldr0(;)), where

G,(i) = (gp-igp-2-go) « the binary-reflected Gray
code encoding of i, and Gt{j) = (gj_,gj_j -go) is the

binary-reflected Gray code encoding of j. Reshaping
the logic arTay into a one-dimensional array such that
(i,j) —> iQ + j preserving the assignment of bits in the
logic array to bits in the physical address space implies
a code conversion for axis zero if i is odd, and data mo-
tion within n0 dimensional subcubes. The result is an
allocation of the form

(gp+1-igp+t-2 ■ ■ ■ gp+f-«, gp+t—M-igr+t-ni-? • • ■ 9f\\

«ddr< «ddr1

g»-)g«-3 ' " •gf-n» gf-»»-I gf-"»-»■ go)

p.ddr" m.ddr"

where, as shown later, gm+, = ff„, m 6 {0, • • • ,p - 1}
and on. = g°m, m 6 {0, ■•-,? - 2}. The value of 0,_,
depends upon the value of gt. Figure 1 illustrates the

data motion.
Note that whereas the initial data allocation was con-

secutive the data allocation after reshaping is not. If
a consistent data allocation is desired, i.e., the same
data allocation scheme before and after reshaping, then
it is in general necessary to change the assignment of
dimensions in the logic address space to dimensions in
the physical address space. A dimension permutation

0 1

J 2

\ / 8 7

5 4

\ /

/ \
12 ia

IS 14 / \

10 11

9 8

/ \
0 1

» 2

\ / 5 4

6 7

\ /

/ \
15 14

12 13 / \

10 11

9 8

\ /

Figure 1: Reshaping an 1 x 16 array to a 4 x 4 array.

[4,13,12,15,10,5] in the form of an n0 step right cyclic
shift, or p - fij steps left cyclic shift on the dimensions
in the field (maddr'Hpaddr0) is required, in combination

with code conversion.
With consecutive allocation of A and a binary encod-

ing of local addresses, and a binary-reflected Gray code
encoding of processor addresses, the processor address of
element (i,;) is formed by computing the address from
the binary-reflected Gray codes of [i/iViJ and [j/N0\.
The local memory address is determined from the bi-
nary codes oft mod JVj and j mod N0- The encoding of
the address field is

(gp-lgp-J-'-g^-n.^-n.-l^-n.-I-^oll
« „ ■ " - '

p.ddr1 m.ddr1

0 0 -0 1.0 L0 . . ffi \
g,-lg,-2 • • • g,-n«,y.,-lil

t-.,-3 b0j-

p.ddi0 m»ddr°

Reconfiguration of the processor array is equivalent to
changing the assignment of dimensions in the logic ad-
dress space to dimension« in the physical address space.
A dimension permutation is required. If the encoding
of the local address field is different from the proces-
sor address field, then a code conversion is required in
combination with the dimension permutation. Reconfig-
uration of a processor array may be required to assure

that all operand« use the same physical machine con-
figuration, as for instance in matrix multiplication on
the Connection Machine [8]. The Connection Machine
Fortran compiler allocates logic arrays to the processors
by denning a processor array congruent to the logic ar-
ray for each array. Hence, in the matrix multiplication
C «- A x B all three matrices may assume a different
shape of the processor array.

m this paper, we show how an axis splitting, or
the combining of two axes into one, can be performed
by a tingle exchange operation. For multiple axes
split/merge operations, the number of element trans-
fers in sequence is independent of the number of axes
created or merged, if the communication system allows
concurrent communication in all required dimensions.
The number of element transfers in sequence is only a
function of the size of the local data set, if there is a
large local data set. The minimum number of element
transfers in sequence is equal to the number of dimen-
sions requiring communication. The conversion between
binary-reflected Gray code and binary code is equiva-
lent to reshaping between a one-dimensional array and
a 2 x 2 x • • • x 2 array of dimension n.

The algorithms we give for reshaping and code conver-
sion are either asymptotically optimal, or optimal within
a factor of two with respect to data transfer time. The
control information can be computed locally from the
node address. The code conversion can start in any di-
mension, and the required exchanges can be carried out
in dimensions ordered arbitrarily. This property allows
reshaping by concurrent communication in all required
dimensions, if the size of the local data set exceeds the
number of dimensions requiring communication. Com-
pared to the algorithms in [6,7] the new algorithms avoid
the pipeline delay. Here we only treat the case with
an entire axis encoded in either binary code, or binary-
reflected Gray code. Furthermore, we assume a fixed
assignment of dimensions in the logic address space to
dimensions in the physical address space. Reshaping
combined with dimension permutations is considered in
[9].

The paper is organized as follows. Notation and def-
initions are introduced next. Array reshaping is dis-
cussed in Section 3. The conversion between binary-
reflected Gray code and binary code is discussed in Sec-
tion 4, followed by summary in Section 5.

2 Preliminaries

A Boolean n-cube has N = 2n nodes. Two nodes
are adjacent if and only if their addresses differ
in exactly one bit. The binary encoding of t is
Bn(i) = (6n-i&n-2 ••&<>) «nd its binary-reflected Gray
code encoding is (7„(t) = (pn-iffn-j • • ffo)- ZN =
{0,1, • • •, N - 1} and (1;) is a string of j instances of

Gn+l =

a bit with value one. "||" is the concatenation symbol
For the complexity estimates we assume bi-directional
channels and concurrent communication on all channels.
The number of elements per node is K. G„ is the se-
2uence of n-bit binary-reflected Gray codes for ZN, i.e.,

L = (c.(o),c.(i), ...,cm(r-i)).

Definition 1 [14] The binary-reflected Gray code is de-
fined recursively as follows.

(7, = ((7,(0),(7,(1)), where (7,(0) = 0,(7,(1) = 1.

/ 0||(7„(0) \
0||(?»(1)

0||(7„(2» - 2)
0||(?„(2" - 1)
l||<?»(2n - 1)
l||(7B(2n - 2)

1||G„(1)
V HKMO)

In the following we always refer to the binary-reflected
Gray code defined above.

Corollary 1 The highest order bit ii the same in the
binary code and the binary-reflected Gray code. The
remaining bits in the encoding of i € Zff/2 aTe <^f"
fined by (7n_i((6„_j&n-j •• b0))- The remaining bits
in the encoding of i 6 ZN — ZN/2 <»r« defined by

(7„-,((6»-26n-3-"M). ThvLt>

6B_,||Gn_,((6n_26n_J-oo)),
ifbn^=0,

&n-l||(7»-,((bn-2&n-3 " ■ • M),
tfb„_, =1.

(7„((6„-l6»-2- "M)= '

Proof: From Definition 1. I

Corollary 2 The integer encoded in the neighbor of
node Gn(i) in cube dimension j is (?„(t © (V+1)), i.e.,
(?„(:) ©2>=(7n(t®(l'+1)).

Proof: It follows from Corollary 1. I

Definition 2 With binary-reflected Gray code encod-
ing of an TV-element one-dimensional array A\i], i € ZN

into an n-cube, address Gn[i) contains A[i\.

Lemma 1 [14] 6m =»„_,© gn-i ffi • • • ffi Sm, me Zn.
Conversely, gm = bm © bm+i. m € Zn with bn = 0.

10 H 4

I
~ir

Shape V

I IUI n
8 6

A 3 Shape U

Figure 2: Reshaping between two arrays with bi-
nary-reflected Gray code encoded on a Boolean cube.

Definition 3 Let A be an array of shape Ud-i x Ud-i x
• ■ • x U0, U = (Ui.uUi.2, • • • - IM, C^m = 2'-, m € ZH,
V = (V.P-i.Kr-j, ••■,%), Vra = 2'-, m 6 Zg and

n™=V^« = ni^K- The reshRPe function ^'^
transforms the shape of the array A from IT to V.

Letti* =(Em=ow™)-1'0* =(Em=o"™)-1'^ =
{üi I 0 < k < d- 1}, V = {it. I 0 < k < d' - 1} and V =
(Ü U V) - (Ü n V). The sets W and V are the sets of most
significant dimensions for the axes of the shapes U and
V, with the most significant axes excluded. For instance,
if U = (2s, 22,24, 23) and V = (2J, 22, 24, 2s), then W =
{8,6, 2}, V = {10,8,4} and V = {10, 6, 4, 2}, Figure 2.
To form the shape V from U communication is required
in the set of dimensions defined by Ü - V for axes being
combined into one, and the set of dimensions defined by
V - W for axes being split. V is the set of dimensions
for which communication is required for changing the
shape U into V. Pp.ddi » 'he subset of dimensions in V
assigned to processor dimensions in the physical address
space. D,n.ddr = V - Pp.ddr i» the set of dimensions in
V assigned to local memory dimensions in the physical
address space.

3 Reshaping Arrays

Lemma 2 below states the fact that splitting an axis
into two, or merging two axes into one, requires a code
change in precisely one dimension.

Lemma 2 Assume node GK(i) contains element A[i\,
i € Zu, initially. If all nodes i = (6„_ib„_2 • • • M
such that 6m = 1 exchange data in dimension
m - 1 /or any m 6 {l,2,---,n - 1}, then

node ^»-„.((MIMJ ■ ■ • ft»))||C?»((t~-ifc»-J • • • *«))
contain* element A[i] after the exchange.

Proof: Assume that the reshape operation is U -
(2B) -» V = (2B-m,2"i), and that address <7„(t) =

(ff«-i(»)ff«-»(*)-- Bo(»)) initially contains element A[i\.
Let « = Jfe2~ + /, I 6 Z,~, k 6 ZN/2-. Af-
ter the reshape operation element », now (k,l),
should reside in address (G._m(*)||<7m(0). where

G„_m(fc) = Gn-„((bn-m-i(k)bn ,(*)••-M*))) =
(fc-m-i(*)fc-«-»(*)-"»•(*))
and Gm(i) = Gn((bn-i(l)bn-,(l)-b0(l))) =

(»»-i(0»»-»(0-"W(0)-
;From the binary encoding bj(k) = bm+i(i), j €

Z„_m, and bj{l) = i>(i). i € 2m. By Lemma 1, Bi{k) =
6,(*)©6,+1(fc) = M,(i)«M,+i(«) = ft.+i(0. for ^
j € £B.ra, andff,(/) = by{t)Obs+l{t) = M»')©&;+,(») =
gi(i) for all j € 2m_,. But, gm-i(t) = MiC) ©
fcm(0 = 6m_,(t) and ffm_,(«) = 6»-i(») ® M»'). ie--

ff~-i(0 =
*»-i(«'), ifM0 = °.

am-i(i), ifM0 = l-

Hence, if bm{i) = 0 then G„(t) = Gn.m{k)\\Gm(()
and no data motion is necessary for reshaping. But,
if 6m(t) = 1 then an exchange is required in dimension
m -1, and only in dimension m -1, since this dimension
is the only dimension in which the code for i and (k,t)

differs. I

The change in the binary-reflected Gray code caused
by an axis splitting, or the merging of two axes, is Lim-
ited to the most significant dimension of the lower or-
dered axis in the created pair of axes. The pairs of ad-
dresses exchanging content in a given dimension depend
upon the order of exchanges in the case of multiple axes
splittings. The control of the exchange is derived from
bm in the encoding of t. The index i assigned to an ad-
dress changes if a more significant controlling dimension
is one. For example, consider the reshaping of an array
of 8 elements encoded in a binary-reflected Gray code
to an array of 2 x 2 x 2 elements (which is equivalent to
conversion to binary code). Figure 3 shows exchanged
data in boldface, and two exchange orders: dimension
one then zero, or zero then one. As is apparent from
Figure 3, an exchange is carried out in dimension one
between addresses 110 and 111 if the dimensions are
treated in the order one first then zero, but not if the
order is dimension zero first, then dimension one.

The current value of bw that is assigned to a given
address {gn-ign-i • ■ ■ go) i» easily determined from the
address.

Lemma 3 If the number of exchanges in dimensions
more significant than m is eten, then the current value
of logic dimension m assigned to an address Gn(i) =
(gn-ign-7--gt) »* M otherwise it is bm.

The lemma follows directly from Corollary 2.
Half of the total number of elements need to be ex-

changed for any split/merge operation. Hence, the num-
ber of exchanges in which an element participates falls in

Gray code Eich. Bxch. Exch. Exch.
assignment dim. 1 dim. 0 dim. 0 dim. 1
t paddr b, t bi t bi t «»3 t

0 000 0 0 0 0 0 0 0 0
1 001 0 1 0 1 0 1 0 1
2 on 0 3 1 s 1 3 0 3
3 010 0 3 1 2 1 2 0 2
4 110 1 7 1 6 0 4 1 0
5 111 1 6 1 7 0 5 1 7
6 101 1 5 0 5 1 7 1 5
7 100 1 4 0 4 1 6 1 4

Figure 3: Reshaping an array of 8 elements into a 2 x 2 x 2
array.

the range 0 - \V\, depending upon its binary encoding
n*~l v

The total number of element exchanges is \V\ for
changing shape U to shape V. We will now determine
the number of element exchanges in sequence when the

logic array is allocated to an n-cube, with "^ = K
elements per processor.

Theorem 1 A lower bound for the number of element
transfers in sequence for array reshaping affecting the
encoding of processor dimensions is K/2 with K ele-
ments per processor.

Proof: Pick a dimension d 6 2>p.ddr- There are N/2
processors that need to transfer data across dimension d.
There are K elements in each processor, and all elements
need to be exchanged. The available bandwidth per
dimension is N. I

In the following, let 6 = |Z>p»ddr|-

Theorem 2 Changing the shape U to shape V preserv-
ing the assignment of logic dimensions to physical di-
mensions requires at most Ä[*] element transfers in
sequence with concurrent communication.

Proof: Ltt Vphidl = {ds.i,d,-2r-,do}- Partition
the local data set of size K into 6 sets of size at most
ff] each. Label the data sets from 0 to 6 - 1. Each
such set is assigned a sequence of dimensions including
all dimensions in 2?p,ddr once. Different sets are assigned
different sequences such that no two sets have the same
first, second, third, etc., dimension. For instance, let
data in set m be assigned the sequence of dimensions

<An.^(m+l)mod*> " i ^(m-l)modJ- ■

The upper bound in Theorem 2 differs from the lower
bound by a factor of two. The upper bound can be
improved in some cases. We give upper bounds that are
almost identical to the lower bounds for two cases.

Theorem S Changing the shape U to shape V preserv-
ing the assignment of logic dimensions to physical di-
mensions requires at most *rfjl + 1 element transfers
in sequence with concurrent communication, if no two

elements o/I>p,ddr uff*T by one and K > 26.

Proof: Consider the merging of a single pair of axes, or
splitting of an axis. Assume the communication occurs
in dimension m— 1. Consider a 2-cube formed by dimen-
sions m and m - 1. Label the four nodes according to
bmtm_i. By Lemma 2, communication is only required
between nodes 10 and 11. There exist two edge-disjoint
paths between these two nodes of lengths one and three,
respectively. By assigning f |y] + 1 elements to the path
of length one and the remaining elements to the path
of length three, ([JJ] +1) element transfers in sequence
are required.

If no two elements in Z>p«ddx differ by one, then the
2-cubes used for different data sets are disjoint. Thus,
£([jj] + 1) element transfers in sequence are required.
To reduce the communication complexity to 6\^] +1,
we slightly overlap the communications on the succes-
sive 2-cubes of a given data set. Without this overlap
no data is sent along the length three path during the
last two cycles of the routing of a data set. By send-
ing two elements that have been routed with respect to
the first 2-cube to the length-three path of the second
2-c\ibe during the last two cycles of the routing phase of
the first 2-cube (with one cycle each), the rcmmunica-
tion delay due to the length-three path is only paid once.
Sending elements along the length-three path during the
last two cycles of the first 2-cube will not interfere with
the communication of the data set exchanged in the sec-
ond 2-cube. The reduced complexity is valid if f *] > 2,
i.e., some data set has at least three elements. I

In the routing used for the proof of the bound, the
number of elements routed along the length-one path
and the length-three path differ by two only for the first
2-cube. For subsequent 2-cubes, the same number of
elements are routed along each path, with the length-
three path starting two cycles earlier. The first element
on both paths arrives at the same time within the 2-cube
except for the first 2-cube. If IS divides K and K > 26,
then the complexity is y +1, which is only one element
transfer above the lower bound. For K < 26, there is
no advantage of using the length-three paths over the
algorithm used in the proof of Theorem 2.

If the reshape operation requires communication in
dimensions m - 1 and m (by creating an axis of length
2 encoded in dimension m), then dimension m cannot
be used for rerouting to access unused communication
links in dimension m - 1. Unused links in dimensions
lower than m - 1 cannot be used either, since they do
not connect to processors with unused links in dimension
m - 1. However, the following observation can be used
to reduce the number of element transfers in sequence.

Lemma 4 For a reshape operation requiring communi-
cation in dimension m-1 none of the linki in dimension
m - 1 is used in m - 1 dimensional subcuhes obtained
through complementing any of the address dimensions
that are more significant than m — 1.

Proof: We need to show that in any m-1 dimensional
subcube defined by dimensions m and higher, om = 0 if
the address defining the subcube is obtained by comple-
menting a single dimension of significance m or higher.
But, by Lemma 1 complementing a single dimension ffy,
j g {m, m + 1, • • •, n - 1} complements bm. I

By using a pipelined algorithm instead of the non-
pipelined maximally concurrent algorithm used for the
upper bound in Theorem 3, the properties in Lemma 4
can be exploited to establish the following bound.

Theorem 4 Changing the shape U to shape V requires
at most [y] -I- 25 - 1 element transfers in sequence, if
for each dimension requiring communication there exists
one more significant dimension not requiring communi-

cation and K > 25.

Proof: The problem is equivalent to sending K ele-
ments along a path of length 5 and each edge on the
path is paired with a length-three path, disjoint with all
other edges. If 8 is even two edge-disjoint paths of length
28 can be denned by combining length-three and length-
one paths for different dimensions. II8 is odd, then two
paths of length 28 - 1 and 25 + 1 can be denned in a
similar way. I

Several routing schemes yield the same complexity as
the scheme used in the proof. For instance, by creating
one path of length 5 and one of length 35, and routing
("?.] + S elements along the short route and [yj - 8
elements along the long route the same routing time is
achieved if K > 25. For K < 25, the latter approach
degenerates to using a single path of length 8 and the
required time is K + 8 - 1, which is lower than if two
paths of the same length were used. However, if K < 25
then the time for reshaping by pipelining along one path
is higher than, or at best the same as if the concurrent
exchange algorithm in the proof of Theorem 2 is used.

Lemma 4 cannot be exploited directly for concurrent
exchange sequences because an exchange in one dimen-
sion affects the set of edges being used in a subcube.
This property follows from Lemma 3. For instance, if
a 1 x 16 array is reshaped into a 4 x 2 x 2 array, then
if an exchange in dimension one is performed first the
required exchanges in dimension zero are all on corre-
sponding links in different subcubes instead of compli-
mentary links.

4 Conversion between Gray
code and binary code

Theorem 5 The conversion between a binary-reflected
Gray code and binary code in either direction requires
communication in n - 1 dimensions, and at most (n -
1)|"_JL.] element transfers in sequence.

Theorem 5 follows from Theorem 2 and the obser-
vation that conversion from binary-reflected Gray code
to binary code in an n-cube is equivalent to reshaping
a one-dimensional array of size 2" to an n-dimensional
array of shape 2 x 2 x • • • x 2.

In any algorithm according to Lemma 2 and Theo-
rem 5 only half of the communications links in each
of the n - 1 dimensions are used in every step of the
algorithm. Every path is of minimum length, and all
minimum length paths are used evenly. The load on the
communications network is minimal.

Conjecture 1 For the conversion between binary-
reflected Gray code and binary code encodings of K el-
ements per processor m an n-cube, a lower bound is

K^.

For n = 2, the conjecture follows from Theorem 3.
For n > 2 only the most significant dimension requires
no communication.

Corollary 3 The conversion between binary-reflected
Gray code and binary code encoding in an n-cube can be
performed as an arbitrary sequence of communications

in dimensions: {0,1, • • ■, n - 2}.

The corollary follows from the observation that the
control is completely determined by the binary encoding

of i.
An algorithm proceeding from dimension n - 2 to di-

mension 0 is depicted in Figure 4. Initially, processor
G4(i) contains data of index i. After the conversion, i is
assigned to processor Bt(i). The algorithm is described
below. Several other algorithms are given in [7].

/* Converting Gray code to binary code
starting from the most significant dimension */

for d := n - 2 downto 0 do

if W+i = 1 tnen

exch. content with the neighbor in dim. d
endif

enddo

The control in the above algorithm is particularly sim-
ple, since the following corollary follows from Lemma 3.

Gray code Exchange Exchange Exchange
dim. 3 dim. 1 dim. 0

data paddr ht data h data »1 data
00 0000 0 00 0 00 0 00
01 0001 0 01 0 01 0 01
03 0011 0 03 0 03 1 OS

03 0010 0 03 0 03 1 03

04 0110 0 04 07 1 00

05 Olli 0 05 00 1 07

oe 0101 0 06 OS 0 05
0T 0100 0 07 04 0 04
08 1100 It 13 0 13
09 1101 14 IS 0 13
10 1111 IS 14 1 IS
11 1110 12 IS 1 14
13 1010 11 0 11 1 10
13 1011 10 0 10 1 11
14 1001 00 0 09 0 09
15 1000 OS 0 08 0 08

Figure 4: Conversion of a binary-reflected Gray code to
binary code

Corollary 4 If the conversion from binary-reflected
Gray code to binary code proceeds from the most signif-
icant dimension to the least significant dimension, then
the current value of bm assigned to on address is equal
to g,n, where m is the controlling dimension.

The algorithm is easy to generalize to an arbitrary
starting dimension m, m 6 Zn-\ with exchanges in suc-
cessive dimensions of decreasing order in a cyclic fash-
ion. The first exchange requires the computation of bm.
Figure 5 gives an example. Sequence 2 is the same as
in Figure 4. The figure shows the location of i for each
step of the algorithm for each sequence. For concurrent
exchanges the local data set K is divided into n — 1
sets, and set m, m 6 £n-i is subject to exchange in
dimension (n — 2 — m — t) mod (n — 2) during step t,

I* Converting Gray code to binary code starting from
dimension m. Dimensions in decreasing order, cyclically*/
if ft,_i ©0„_2© ••• ©0m+i = 1 then

exch. content with the neighbor in dim. m
endif
for d := m - 1 downto 0 do

•f JM+i = 1 then
exch. content with the neighbor in dim. d

endif
enddo
for d := n - 2 downto m+ldo

if gA+i = 1 then
exch. content with the neighbor in dim. d

endif
enddo

Orajr code Seq 2 Seq 1 Seq 0
aMignment Bxchange dün. ■xchange cüxn. Bxchange dim

Data paddr 2 1 0 I 0 2 0 2 1
0 0000 0 0 0 0 0 0 0 0
1 0001 1 1 1 1 1 1 1 1
2 0011 2 2 2 s 3 S 3 3
3 0010 3 3 3 a 2 3 2 2
4 0110 4 7 T • C 4 4 •
S 0111 S 6 • 7 7 S 5 7
6 0101 6 S S s 5 7 7 S
7 0100 7 4 4 4 4 e 6 4
S 1100 16 12 S S 12 S 14 12
9 1101 14 IS • • IS 9 IB 13

10 1111 IS 14 10 11 IS 11 13 IS
11 1110 13 IS 11 10> 14 10 13 14
12 1010 11 11 IS 14 10 12 10 10
13 1011 10 10 14 IS 11 13 11 11
14 1001 9 9 IS 13 9 IS 9 9
IS 1000 8 8 13 12 8 14 8 8

Figure 5: Concurrent conversion of a binary-reflected
Gray code to binary code.

5 Summary

We have shown that the splitting of a binary-reflected
Gray code encoded axis into two binary-reflected Gray
coded axes only requires an exchange in the most signif-
icant dimension of the lower order axis. The exchanges
required for multiple axis splittings can be performed in
arbitrary order.

Assume concurrent communication on all ports, K el-
ements per processor, and 6 dimensions requiring com-
munication for the reshape operation. If Jf is a multiple
of 6, then the number of element transfers in sequence
is independent of 6. An upper bound is K and a lower
bound is *. We present three algorithms: (i) one of
communication complexity Äf*], (ii) one of complex-
ity 6\§j~\ + 1 for reshape operations for which no two
dimensions requiring communication are adjacent and
K > 26, and (iii) and one of complexity y -I- 26 - 1, if
there is one unused processor dimension of higher order
for every processor dimension requiring communication.
The previously best known algorithm has a complexity
of Ä"+ 5-1 [6].

The conversion between binary-reflected Gray code
and binary code encodings is a special case of reshaping
an array, and can be carried out on an n-cube by n -
1 exchanges in dimensions 0, l,---,n — 2 in arbitrary
order with a complexity of at most (n — l)[^jl element
transfers in sequence.

References

[1] CM-Fortran Release Notes.
Corp., 1989.

Thinking Machines

[2] Jean-Philippe Brunet, Danny C. Sorensen, and
S. Lennart Johnsson. A Data Parallel Imple-
mentation of the Divide-And-Conquer Algorithm

for Computing Eigenvalue, of Tridxagonal Systems. [15] Paul N. Swaratrauber. Multiprocessor FFTs. Par-
Technical Report , Thinking Machine« Corp., 1989. allel Computing, 5:197-210, 1987.

in preparation.

[3] J.J. Dongarra and D.C Sorensen. A fully paral-
lel algorithm for the symmetric eigenvalue prob-
lem. SIAM J. Scientific and Statistical Computing,
8(2):il39-sl53, 1987.

[4J Peter M. Flanders. A unified approach to a class
of data movements on an array processor. IEEE
Tram. Computers, 31(9):809-819, September 1982.

[5] Ching-Tien Ho and S. Lennart Johnsson. Stable
Dimension Permutations on Boolean Cubes. Tech-
nicalReport YALEU/DCS/RR-617, Department of
Computer Science, Yale University, October 1988.

[6] S. Lennart Johnsson. Communication efficient
basic linear algebra computations on hyper-
cube architectures. /. Parallel Distributed Corn-
put., 4(2):133-172, April 1987. (Tech. Rep.
YALEU/DCS/RR-361, Yale Univ., New Haven,
CT, January 1985).

[7] S. Lennart Johnsson. Optimal Communication in
Distributed and Shared Memory Models of Compu-
tation on Network Architectures, page Morgan
Kaufman, 1989.

[8] S. Lennart Johnsson, Tim Harris, and Kapil K.
Mathur. Matrix multiplication on the connec-
tion machine. In Supercompuitng 89, page ,
ACM, November 1989. Department of Com-
puter Science, Yale University, Technical Report
YALEU/DCS/RR-736.

[9] S. Lennart Johnsson and Ching-Tien Ho. Reshap-
ing of Arrays on Boolean Cubes. Technical Report,
Department of Computer Science, Yale University,
1990. in Preparation.

[10] S. Lennart Johnsson and Ching-Tien Ho. Shuf-
fle Permutations on Boolean Cubes. Technical Re-
port YALEU/DCS/RR-653, Department of Com-
puter Science, Yale University, October 1988.

[11] Michael Metcalf and John Reid. Foriran 8X Ex-
plained. Oxford Scientific Publications, 1987.

(12) David Nassimi and Sartaj Sahni. Optimal bpc
permutations on a cube connected simd computer.
IEEE Trans. Computers, C-31(4):338-341, April
1982.

(13) David Nassimi and Sartaj Sahni. An optimal rout-
ing algorithm for mesh-connected parallel comput-
ers. JACM, 27(l):6-29, January 1980.

[14] E M. Reingold, J Nievergelt, and N Deo. Combina-
torial Algorithms. Prentice-Hall, Englewood Cliffs.
NJ, 1977.

